Test Topic: Quadratic Equation

Batch: JEE Main & Advanced

Test Analysis (Mathematics)						
Student Name :			Batch :			
Туре	Marking Scheme	Right	Wrong	Left	Score	
Single Answer Correct (Q1-Q10)	+4, -1					
Multiple Answer Correct (Q11-Q18)	+4, -1					
Numerical Answer Type (Q19-Q25)	+4, -1					
Total						

Single Choice Correct Type

1.	$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots \infty}}}$ then $x =$	
	(A) $2 \text{ and } -1$	(B) 2 and 1
	(C) -1	(D) none of these

The number of real solutions of the equation $|x|^2 - 4|x| + 3 = 0$ is 2. (A) 4 (B) 2

(D) 3 (C) 1

If the roots of the quadratic equation $x^2 - ax + b = 0$ are real and differ by a quantity less than 1, then 3.

(A)
$$b > \frac{a^2}{4}$$

(B) $b < \frac{a^2 - 1}{4}$
(C) $\frac{a^2 - 1}{4} < b < \frac{a^2}{4}$
(D) none of these

4. The set of values of 'a' for which the equation $x^3 - 3x + a = 0$ has three distinct real roots, is (A) $(-\infty,\infty)$ (B) (-2, 2) (D) none of these (C) (-1, 1)

The least integral value of k such that $(k-2)x^2+8x+k+4$ is positive for all real values of x is 5. (A) 1 (B) 2

(D) 5 (C) 3

If α and β are the roots of the equation $x^2 - P(x+1) - q = 0$ then the value of $\frac{\alpha^2 + 2\alpha + 1}{\alpha^2 + 2\alpha + q} + \frac{\beta^2 + 2\beta + 1}{\beta^2 + 2\beta + q}$ is 6. (A) 2 (B) 1

(C) 0 (D) None

In the quadratic equation $ax^2 + bx + c = 0$, $\Delta = b^2 - 4ac$ and $\alpha + \beta$, $\alpha^2 + \beta^2$, $\alpha^3 + \beta^3$, are in G.P. where α , β are the root of ax^2 7. +bx + c = 0, then (A) Δ≠ 0 (B) $b\Delta = 0$

(C) $c\Delta = 0$ (D) $\Delta = 0$

The sum of real roots of the equation $x^2 - 2^{2008}x + |x - 2^{2007}| + 2(2^{4013} - 1) = 0$ 8. (A) 2²⁰⁰⁷ (B) 2²⁰⁰⁶ (C) 2²⁰⁰⁸ (D) None of these

If x_1 and x_2 are the roots of $x^2 + (\sin \theta - 1)x - \frac{1}{2}\cos^2 \theta = 0$ then the maximum value of $x_1^2 + x_2^2 = 0$ 9. (A) 2 (B) 3 (C) $\frac{9}{4}$ (D) 4 If f(x) = 0 is a cubic equation with positive and distinct roots α , β , γ such that β is the H.M of the roots of f'(x) = 0. 10. then α , β , γ are in (A) A.P (B) G.P (C) H.P (D) none of these Multiple Choice Correct Type If a, b \in {1, 2, 3, 4} and $ax^2 + bx + 1 = 0$ has real roots, then 11. (A) a>b (B) $a \le b$ (C) Number of possible pairs (a, b) is 7 (D) none of these The values(s) which 'c' may take so that $x^3 - 6x^2 + 9x - c$ is of the form $(x - \alpha)^2 (x - \beta) (\alpha, \beta \text{ real})$ is/are 12. (A) 0 (B) 4 (C) 1 (D) 3 Let α,β be the roots of $x^2 - 4x + A = 0$ and γ,δ be the roots of $x^2 - 36x + B = 0$. If $\alpha,\beta,\gamma,\delta$ form an increasing G.P., then 13. (A) B = 81 A(B) A = 3(D) A + B = 251(C) B = 243If the equation $cx^2 + bx - 2a = 0$ has no real roots and $a < \frac{b+c}{2}$ then 14. (A) ac < 0 (B) a < 0 (D) $\frac{c+2b}{8} > a$ (C) $\frac{c-b}{2} > a$ If a, b and c are three terms of an A.P such that $a \neq b$ then $\frac{b-c}{a-b}$ may be equal to 15. (A) $\sqrt{2}$ (B) √3 (D) 3 (C) 1 Let a, b, $c \in R$. If $ax^2 + bx + c = 0$ has two real roots A and B where, A < -1 and B > 1, Then 16. (A) $1 + \left|\frac{b}{a}\right| + \frac{c}{a} < 0$ (B) $1 - \left| \frac{b}{a} \right| + \frac{c}{a} < 0$ (C) |c| < |a|(D) |c| < |a| - |b|If α , β are roots of $ax^2 + bx + c = 0$, $ac \neq 0$, then 17. (A) $\frac{1}{\alpha}, \frac{1}{\beta}$ are the roots of $cx^2 + bx + a = 0$ (B) $-\alpha$, $-\beta$ are the roots of $ax^2 - bx + c = 0$ (C) α^2 , β^2 are the roots of $a^2x^2 - (b^2 - 2ac)x + c^2 = 0$ (D) 2α , 2β are the roots of $ax^2 + 2bx + 4c = 0$ If α is one root of the equation $4x^2 + 2x - 1 = 0$, then its other root is given by 18. (B) $4\alpha^3 + 3\alpha$ (A) $4\alpha^3 - 3\alpha$ (C) $\alpha - (1/2)$ (D) $-\alpha - (1/2)$

Numerical Answer Type

- 19. The number of real roots of $(7 + 4\sqrt{3})^{|x|-8} + (7 4\sqrt{3})^{|x|-8} = 14$ is
- 20. The number of integral solutions of $\frac{x+2}{x^2+1} > \frac{1}{2}$ is 3
- 21. The number of solutions of the equation [2x]-[x+1] = 2x must be equal to (where [.] denotes the greatest integer function)
- 22. Let $P(x) = x^3 8x^2 + cx d$ be a polynomial with real coefficients and with all its roots being distinct positive integers. Then number of possible value of c is _____.
- 23. If $x^2 + 2ax + a < 0 \forall x \in (1,2)$ then the minimum value of |5a| is
- 24. If the roots of equation $ax^2 + bx + c = 0$ ($a \neq 0$) are α and β and the roots of the equation $a^5 x^2 + ba^2 c^2 x + c^5 = 0$ are 4 & 8 then the numerical value of $\alpha\beta$ is
- 25. Let 'S' be the sum of all the integral values of 'a' for which one root of the equation $(a-5)x^2 2ax + a 4 = 0$ is smaller than 1 and the other is greater than 2, then $\frac{S-61}{25}$ is equal to